數學講義

第一回

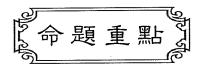
151300-1

數學講義 第一回 目錄

第-	-0	(1/2)

第一講 數、數列、級數與極限	
命題重點	1
重點整理	
一、基礎概念······	2
二、數	
三、數列、級數與極限1	
精選試題3	0
第一回 (2/2)	
第二講 不等式與多項式	1
命題重點	1
重點整理·····	2
一、不等式	
二、多項式1	2
	2

第一講數、數列、級數與極限



- 一、基礎概念
 - ()數學邏輯
 - 口條件命題
 - 白集合
 - 四函數

二、數

- H自然數
- 口有理數與無理數
- 闫實數
- 四絕對值
- 因複數

三、數列、極數與極限

- ()等差數列與等比數列
- ()一般數列
- 勻無窮數列與級數斂散性之判別
- 四公式運算
- 田極限値
- 份數學歸納法

一、基礎概念

(一)數學邏輯:

- 1. 真假值的判別:
 - (1)「A ∧ B 」為真——表示"A 與 B 每—為真"。
 - (2)「AVB」為真——表示"A與B有一為真"。
 - (3)「若A,則B」恆真是——當A 恆偽時,或當B 恆真時。

範例:設 $x \in R$,敘述 "若 (x+1)(x+2) = 0 ,則 x=3 " 為真,則下列何者為滿足此命題之集合: (A) R (B) $\{-1,-2\}$ (C) $\{3\}$ ① $R-\{3\}$

 $\times R - \{-1, -2\}$

解析: (x + 1)(x + 2) = 0 為偽,或x = 3 為真之故∴選 \mathbb{C} \times

- 2. 同義命題:
 - (1)A → B \equiv \bar{B} → \bar{A} \equiv \bar{A} \vee B \equiv B \vee \bar{A} 配合使用下列公式。

 - $\textcircled{4} \overline{\mathcal{V}x , P(x)} \equiv \mathcal{H}x , \overline{P(x)} \quad \textcircled{5} \overline{\mathcal{H}x , P(x)} \equiv \mathcal{V}x , \overline{P(x)}$
 - (2)常用符號:

符號	p,q	$ar{p}(\sim p)$	T	F	=	٨	٧	V	\mathcal{H}	Э
意義	敘 述	否定	真	假	同義	且	或	每一	有一	使 得
命題:→表"若…則…";→表"若且唯若…則…";⇒表"蘊涵"										

- (3)同義命題:具有相同的眞假値者。
 - ① $p \rightarrow q$ 恆真 $\equiv p$ 為假 $\equiv q$ 為真 $\equiv ($ 若設定任意條件下 p 真後,均可推導出 q 亦真) 。
 - ② $p \rightarrow q \equiv \overline{q} \rightarrow \overline{p}$ ($\mathbb{H}: p \rightarrow q \equiv \sim q \rightarrow \sim p$) \circ
 - ③ $p \rightarrow q \equiv \overline{p} \lor q$ (即: $p \rightarrow q \equiv \sim p \lor q$)。
- ⑷否定的同義命題:
 - ① $\overline{p \lor q} \equiv \overline{p} \land \overline{q}$ (即: $\sim (p \lor q) \equiv \sim p \land \sim q$)。

②
$$\overline{p \wedge q} \equiv \overline{p} \vee \overline{q}$$
 [\mathbb{H} : $\sim (p \wedge q) \equiv \sim p \vee \sim q$] _o

(3)
$$\overline{(p \to q)} \equiv p \land q \quad (\mathbb{H} : \sim (p \to q) \equiv p \land (\sim q))$$

④
$$\overline{Vx}$$
 , $p(x) \equiv \mathcal{H}x$, $\overline{p(x)}$ 〔即: \sim (Vx , $p(x)$) $\equiv \mathcal{H}x$, ($\sim p(x)$)] 。

⑤
$$\overline{\mathcal{J}x}$$
 , $p(x) \equiv \mathcal{V}x$, $\overline{p(x)}$ 〔即: \sim ($\mathcal{J}x$, $p(x)$) $\equiv \mathcal{V}x$, ($\sim p(x)$)] $_{\circ}$

範例:(1)設 a , $b \in R$,則 a = b = 0 為 a + b = 0 之 (A)必要條件 (B)充分條件 (C)充要條件。

(2) x = 3 且 y = 5 為 x + y = 8 的 (A)充分條件 (B)必要條件 (C)充要條件。

(二)條件命題:

1.利用雙箭頭保證法:必須輔以配方法與代入法解題之

2.利用集合作圖法:必須配合二元不等式之圖形解題之。

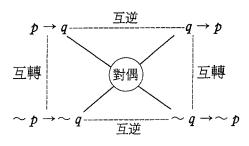
條件種類\判別方法	方法一:畫雙箭頭法	方法二:集合作圖法
p為q之充分條件	p — 定成立 不一定成立 q	$p \subset q$ Q
p為q之必要條件	p — 不一定成立 — 一定成立 — q	$p \supset q$ q
p為q之充要條件	p — 定成立 — 定成立	p=q(圖形相等)

範例: 欲證命題「若A則B」亦即證明下列何命題? (A)若非A則非B (B)若B

則非A (C)若非B則A (D)若非B則非A。

解析:由對偶命題知 $A \rightarrow B \equiv \sim B \rightarrow \sim A$

151300-1 (1/2)



故選(D)

(三)集合:

1.集合的解題法:

(1)集合與數系:

- ① $N \subset Z \subset Q \subset R \subset C$; $N \cup Z \cup Q \cup R \cup C = C$; $N \cap Z \cap Q \cap R \cap C = N$ →循環小數為有理數; π , $\sqrt{2}$, $\sqrt{3}$ 等均為無理數; $\sqrt{-1} = i$ 為複數(但 $\sqrt[3]{-1} = -1$ 為實數)。
- ②集合 $A = \{ax + by \mid x, y \in Z, a, b$ 為已給整數 $\}$,則: $A \ddot{A} (a, b) = 1 \text{ (即 } a \text{ 與 } b \text{ 互質) } , \text{則 } A = Z \text{ (即 } A \text{ 為全體整數集合)} .$ $B \ddot{A} (a, b) = d \text{ (即 } a \text{ 與 } b \text{ 之最大公因數為 } d \text{) } , \text{則 } A = \{dm \mid m \in Z\}$ (即 A 為全體 d 的倍數所成集合) .

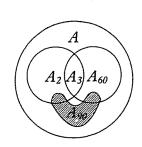
(2)集合與幾何:

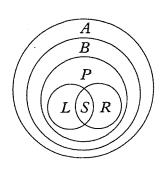
- ① 令 A_{90} 為所有直角 \triangle 之集合 A_2 為所有等腰 \triangle 之集合 A_3 為所有等邊 \triangle 之集合 A_{60} 為所有 \triangle 中至少有一角為 60° 之集合 A 為任意 \triangle 之集合
- ②令 A 表所有四邊形之集合
 - P 為所有平行四邊形之集合
 - L 為所有菱形之集合

B為所有梯形之集合

- R 為所有矩形之集合
- S 為所有正方形之集合

(3)集合與代數:





- ①明瞭題意,使用集合符號。
- ②次作集合圖形思考之。
- ③ 後配合代數不等式與方程式理論。
- 範例 1 . : 不等式 (x-2)(x+3)>0 的解集合為 S ,而 $A=\{x\mid -1< x<1$, $x\in R$ } , $B=\{x\mid 1< x<3$, $x\in R$ } , $C=\{x\mid 2< x<4$, $x\in R$ } , $D=\{x\mid -4< x<-2$, $x\in R$ } , 則下列何者正確? (A) $A\subset S$ (B) $B\subset S$ (C) $C\subset S$ (D) $D\subset S$ 。

解析: $S = \{ x \mid x > 2, x < -3, x \in R \}$ 由圖解 S, A, B, C, D知 $C \subset S$

$$S \xrightarrow{D} A \xrightarrow{B} C \xrightarrow{C} S$$

$$-4 -3 -2 -1 \qquad 1 \qquad 2 \qquad 3 \qquad 4$$

範例2:(1)設 $A = \{ x \mid x^2 = 1 \}$, $B = \{ -1, 1 \}$,則 (A) $A \in B$ (B) $A \in B$ (C) $A \supset B$ \circ

(2)設 $A = \{x, y, z\}$, $B = \{x + 1, 2, 3\}$,若A = B,則 (x, y, z) 有幾組?

解析:
$$(1)$$
: $x^2 = 1 \Rightarrow x = \pm 1$, 即 $A = \{1, -1\}$ 故 $A = B$

$$(2)$$
: $A = B 且 x \neq x + 1 \Rightarrow x = 2$ 或 $x = 3$

①當
$$x = 2$$
時, $A = \{ 2, y, z \}$, $B = \{ 2, 3 \}$

$$\therefore y$$
, z 中至少有一為 3

②當
$$x = 3$$
 時, $A = \{ 3, y, z \}$, $B = \{ 2, 3, 4 \}$

$$\therefore (y, z) = (2, 4)$$
或 $(4, 2)$ 二組

故 (x, y, z) 共五組解

- 2.集合的元素個數:
 - (1)聯集與交集元素個數的最大與最小:
 - ① $n(A \cup B)$ 最大為 a + b,最小為 a, b中之較大者:

(即
$$\frac{a+b+\mid a-b\mid}{2}$$
)

精選試題

一、選擇題(含單選、多選)

1. 設
$$a = 0.9$$
 , $b = 1.1$, $c = 1.01$, 以及
$$x_n = \frac{\alpha a^n}{1 + a^n} + \frac{\beta b^n}{1 + b^n} + \frac{\gamma c^n}{1 + c^n}$$
 , $n = 1$, 2 , 3 ,

$$,$$
 式中 α , β , γ 為任意實數,則極限值 $\lim_{n\to\infty}$ $x_n =$

(A) (i) (B)
$$\alpha + \beta + \gamma$$
 (C) $\alpha + \beta$ (D) $\beta + \gamma$ (E) $\alpha + \gamma$ \circ

解析:
$$a = 0.9 \Rightarrow -1 < a < 1 \Rightarrow \lim_{n \to \infty} a^n = 0$$

$$b = 1.1 \implies -1 < \frac{1}{b} < 1 \implies \lim_{n \to \infty} (\frac{1}{b})^n = 0$$

$$c = 1.01 \implies -1 < \frac{1}{c} < 1 \implies \lim_{n \to \infty} (\frac{1}{c})^n = 0$$

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} \left(\frac{\alpha \cdot a^n}{1+a^n} + \frac{\beta}{\left(\frac{1}{b}\right)^n + 1} + \frac{\gamma}{\left(\frac{1}{c}\right)^n + 1} \right)$$

$$=\frac{\alpha \cdot 0}{1+0} + \frac{\beta}{0+1} + \frac{\gamma}{0+1} = \beta + \gamma \qquad \text{ } \mathbb{E}(D)$$

2. 若將 $\frac{1}{4369} + \frac{1}{5911}$ 化為最簡分數,則其分母為何?

(A) 100487 (B) 100489 (C) 10280 (D) 25825159 (E) 25825161 °

解析:(1)取4369與5911的最小公倍數:

由
$$4369 = 17 \times 257$$
 ; $5911 = 23 \times 257$

$$\Rightarrow$$
 (4369 , 5911) = 17 \times 23 \times 257 = 100487

得
$$\frac{1}{4369} + \frac{1}{5911} = \frac{23+17}{100487} = \frac{40}{100487}$$

$$(2)$$
由 $40 = 23 × 5$,得 (40 , 100487) = 1

$$\Rightarrow \frac{40}{100487}$$
 為所求之最簡分數,其分母為 100487 ,選(A)

3. 有一個無窮等比級數,其和爲 $\frac{8}{9}$,第四項爲 $\frac{3}{32}$ 。已知公比爲一有理數,則當公比以最簡分數表示時,其分母爲 (A)2 (B)3 (C)4 (D)6 (E)8。

解析: 設公比爲r,r∈Q,且首項爲a,則

$$\begin{cases} \frac{a}{1-r} = \frac{8}{9} \cdots \cdot \text{1} \\ ar^3 = \frac{3}{32} \cdots \cdot \text{2} \end{cases}$$

$$\frac{2}{1}$$
, $r^{3}(1-r) = \frac{27}{256} = \frac{1}{4} \cdot (\frac{3}{4})^{3} = (\frac{3}{4})^{3} \cdot (1-\frac{3}{4})^{3}$

$$\therefore$$
r \in Q, \therefore r $=\frac{3}{4}$,選(C)

4. 下列何者是2100除以10的餘數? (A)0 (B)2 (C)4 (D)6 (E)8。

解析<法->: 考慮2ⁿ之個位數:2, 4, 8, 6, 2, 4, 8, 6, \cdots , 每4個一循環,而 $100 = 4 \times 25$ 爲4的倍數, $\therefore 2^{100}$ 的個位數爲6,得所求餘數爲6,選(D)。

<注二>:
$$R_{10}(2^{100}) = R_{10}((2^5)^{20}) = R_{10}(32^{20}) = R_{10}(2^{20})$$

= $R_{10}((2^5)^4) = R_{10}(32^4) = R_{10}(2^4)$
= $R_{10}(16) = 6$, 選(D)

其中R_b(a)表a被b除之餘數

5. 下圖表示長方形垛的疊法:

某水果販將橘子堆成長方形垛。

若最底層長邊有10個檔子,短邊有5個,則此長方形垜最多有幾個檔子?

(A) 110 (B) 120 (C) 130 (D) 140 (E) 150 o

解析:最底層有10×5個橘子

底層的 上一層有 9 × 4 個檔子

再上一層有8×3個橘子

接著有7×2個橘子

最上層有6×1個橘子

:.此長方形垜最多有 50 + 36 + 24 + 14 + 6 = 130 個檔子,選(C)

6. 設($1-\frac{1}{2^2}$)($1-\frac{1}{3^2}$)…($1-\frac{1}{49^2}$)= $\frac{a}{b}$,其中 a , b 為互質的正整數,則

$$a + b = (A) 70 (B) 71 (C) 72 (D) 73 (E) 74 \circ$$

解析:原式=
$$\frac{2^2-1}{2^2} \cdot \frac{3^2-1}{3^2} \cdot \dots \cdot \frac{49^2-1}{49^2}$$

= $(\frac{2-1}{2} \cdot \frac{2+1}{2}) \cdot \cdot (\frac{3-1}{3} \cdot \frac{3+1}{3}) \cdot \dots \cdot (\frac{49-1}{49} \cdot \frac{49+1}{49})$
= $(\frac{1}{2} \cdot \frac{3}{2}) \cdot (\frac{2}{3} \cdot \frac{4}{3}) \cdot (\frac{3}{4} \cdot \frac{5}{4}) \cdot \dots \cdot (\frac{48}{49} \cdot \frac{50}{49})$