
第 回 151100-1 分 经 出版

數學講義 第一回 目錄

绺 —	(1	19	1
邪	ĮΙ,	/ ᠘	•

第一講 數、數列、級數與極限	
命題重點	
重點整理·····	2
二、數	13
三、數列、級數與極限	
精選試題	30
第一回 (2/2)	
第二講 不等式與多項式	1
命題重點	
重點整理······	
一、不等式	_
二、多項式	
精選試題	32

第一講數、數列、級數與極限


- 一、基礎概念
 - ()數學邏輯
 - 口條件命題
 - 闫集合
 - 四函數

二、數

- (·)自然數
- 口有理數與無理數
- 闫實數
- 四絕對值
- 田複數

三、數列、極數與極限

- ()等差數列與等比數列
- 口一般數列
- 白無窮數列與級數斂散性之判別
- 四公式運算
- **田極限値**
- 的數學歸納法

一、基礎概念

(一)數學邏輯:

- 1. 真假值的判别:
 - (1)「A ∧ B 」為真——表示"A 與 B 每一為真"。
 - (2)「AVB」為真——表示"A與B有一為真"。
 - (3)「若A,則B」恆真是——當A恆偽時,或當B恆真時。

範例:設 $x \in R$,敘述"若(x + I)(x + 2) = 0,則x = 3"為真,則下列何者為滿

足此命題之集合:(A) R (B) { - 1 , - 2 } (C) { 3 } (D) R - { 3 }

 $\oplus R - \{-1, -2\}$

解析: (x + 1)(x + 2) = 0 為偽,或x = 3 為真之故∴選 \mathbb{C} \times

- 2.同義命題:
 - (1)A → B \equiv \bar{B} → \bar{A} \equiv \bar{A} V B \equiv B V \bar{A} 配合使用下列公式。

 - $\textcircled{4} \overline{Vx , P(x)} \equiv \mathcal{I}x , \overline{P(x)} \quad \textcircled{5} \overline{\mathcal{I}x , P(x)} \equiv Vx , \overline{P(x)}$
 - (2)常用符號:

符號	p , q	$\bar{p}(\sim p)$	T	F	=	٨	٧	¥	\mathcal{E}	Э
意義	敘 述	否定	真	假	同義	且	或	毎一	有一	使 得
命題:→表"若…則…";→表"若且唯若…則…";→表"蘊涵"										

- (3)同義命題:具有相同的眞假値者。
 - ① $p \rightarrow q$ 恆真 $\equiv p$ 為假 $\equiv q$ 為真

= (若設定任意條件下p 真後,均可推導出q 亦真)。

- ② $p \rightarrow q \equiv \overline{q} \rightarrow \overline{p}$ (即: $p \rightarrow q \equiv \sim q \rightarrow \sim p$)。
- ③ $p \rightarrow q \equiv \overline{p} \lor q$ (即: $p \rightarrow q \equiv \sim p \lor q$)。
- ⑷否定的同義命題:
 - ① $\overline{p \lor q} \equiv \overline{p} \land \overline{q}$ 〔即: $\sim (p \lor q) \equiv \sim p \land \sim q$ 〕。

②
$$\overline{p \wedge q} \equiv \overline{p} \vee \overline{q}$$
 〔即: $\sim \langle p \wedge q \rangle \equiv \sim p \vee \sim q$ 〕。

(3)
$$\overline{(p \to q)} \equiv p \land q \quad (\text{III} : \sim (p \to q) \equiv p \land (\sim q))$$

④
$$\overline{Vx}$$
, $p(x) \equiv \mathcal{I}x$, $\overline{p(x)}$ 〔即: \sim (Vx , $p(x)$) $\equiv \mathcal{I}x$, ($\sim p(x)$)〕。

⑤
$$\overline{\mathcal{J}x}$$
, $p(x) \equiv Vx$, $\overline{p(x)}$ [即: $\sim (\mathcal{J}x, p(x)) \equiv Vx$, $(\sim p(x))$]。

範例:(1)設a, $b \in R$,則a = b = 0為a + b = 0之 (A)必要條件 (B)充分條件 (C)充要條件。

(2) x = 3 且 y = 5 為 x + y = 8 的 (A)充分條件 (B)必要條件 (C)充要條件。

(2)
$$x = 3$$
, $y = 5 \Rightarrow x + y = 8$ 成立
但 $x + y = 8 \Rightarrow x = 3$ 且 $y = 5$ 不一定成立
故選(A)充分條件

(二)條件命題:

1.利用雙箭頭保證法:必須輔以配方法與代入法解題之

2.利用集合作圖法:必須配合二元不等式之圖形解題之。

條件種類\判別方法	方法一:畫雙箭頭法	方法二:集合作圖法
p為q之充分條件	ク → 一定成立 不一定成立 イ	$p \subset q$ p
p為q之必要條件	p ————————————————————————————————————	$p \supset q$ q
p為q之充要條件	p 一定成立 一定成立 q	p = q (圖形相等)

範例: 欲證命題「若A則B」亦即證明下列何命題? (A)若非A則非B (B)若B

則非A (C)若非B則A (D)若非B則非A。

解析:由對偶命題知 $A \rightarrow B \equiv \sim B \rightarrow \sim A$

精選試題

- (B) 1. 設 a, b, x, y 均為正有理數,且 a > b, x > y, $A = \frac{a}{b}$, $B = \frac{b}{a}$, $C = \frac{a+x}{b+x}$, $D = \frac{a+y}{b+y}$, $E = \frac{b+x}{a+x}$, $F = \frac{b+y}{a+y}$, 則A, B, C, D, E, F 之大小順序為
 - (A) C > D > A > B > F > E
 - (B) A > D > C > E > F > B
 - (C) C > D > A > E > F > B
 - (D) A > D > C > B > F > E
 - (E) B > F > E > A > D > C.
- (C) 2. 若 $\sqrt{55+\sqrt{55}}$ 介於兩正整數 a 及 a+1 之間,則 a 之值為 (A) 5 (B) 6 (C) 7 (D) 8 (E) 9.
- (A) 3. 若 $\sqrt{17+\sqrt{288}}$ 的正小數部分為x, 則 $\frac{\sqrt{x+2+\sqrt{4x+x^2}}}{\sqrt{x+2-\sqrt{4x+x^2}}}$ 之值為 (A) $\sqrt{2}+1$ (B) $\sqrt{3}+1$ (C) $\sqrt{3}+2$ (D) $\sqrt{2}$ (E) $\sqrt{3}$.
- (D) 4. 若將 ²/₇ 化成小數時, 則小數點後第 100 位數字為 (A) 1 (B) 2 (C) 5 (D) 7 (E) 8.
- (B) 5. 下列各數中,何者最大? (A) 0.353 (B) 0.353 (C) 0.353 (D) 0.353 (E) 0.3533.
- (B) 6. 一個無窮等比級數的首項為 $0.\overline{3}$,第二項為 $0.2\overline{7}$,則此無窮等比級數的總和為 (A) 1 (B) 2 (C) 3 (D) $\frac{3}{7}$ (E) $\frac{5}{3}$.
- (C) 7. 無窮等比級數的和 $\frac{9}{2}$, $a_2 = -2$, $\nabla |S_n \frac{9}{2}| < \frac{1}{10^4}$, 已知 $\log 2 = 0.3010$, $\log 3 = 0.4771$, 則自然數 n 的最小值為 (A) 8 (B) 9 (C) 10 (D) 11 (E) 12.
- (B) 8. 計算 $\lim_{n\to\infty} \frac{1+2+3+4+\cdots+n}{n^2+n+2}$ 之值為 (A) $\frac{1}{3}$ (B) $\frac{1}{2}$ (C) 1 (D) 2 (E) 3.
- (A) 9. 設 a_n 為 15"之正因數總和,求 $\lim_{n\to\infty} \frac{a_n}{15}$ = (A) $\frac{15}{8}$ (B) $\frac{8}{15}$ (C) $\frac{4}{15}$ (D) $\frac{8}{225}$ (E) $\frac{4}{225}$.
- (B) 10. 化簡 1+(1+2)+(1+2+3)+…+(1+2+3+…+n) 為

(A)
$$\frac{n(n+1)(n+2)}{3}$$
 (B) $\frac{n(n+1)(n+2)}{6}$ (C) $\frac{n(n+1)(2n+1)}{3}$ (D) $\frac{n(n+1)(2n+1)}{6}$ (E) $\frac{n(n+1)(2n+1)}{12}$.

(C) 11. 化簡
$$\frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3} + \frac{1}{1+2+3+4} + \dots + \frac{1}{1+2+3+\dots+n}$$
 為 (A) $\frac{n}{n+1}$ (B) $\frac{n}{n+2}$ (C) $\frac{2n}{n+1}$ (D) $\frac{2n}{n+2}$ (E) $\frac{n}{2n+1}$.

(C) 12. 化簡
$$\frac{1}{5} + \frac{2}{25} + \frac{3}{125} + \dots + \frac{n+1}{5^{n+1}}$$
 為
(A) $\frac{5^{n+2} - 4n + 9}{4^2 \cdot 5^{n+1}}$ (B) $\frac{5^{n+2} + 4n - 9}{4^2 \cdot 5^{n+1}}$ (C) $\frac{5^{n+2} - 4n - 9}{4^2 \cdot 5^{n+1}}$ (D) $\frac{5^{n+2} + 4n + 9}{4^2 \cdot 5^{n+1}}$ (E) $\frac{-5^{n+2} - 4n + 9}{4^2 \cdot 5^{n+1}}$.

- (A) 13. 設 $n \in N$, 若n除以 13 餘 6, 則 $n^2 3n + 2$ 除以 13 的餘數為 (A) 7 (B) 8 (C) 9 (D) 10 (E) 11.
- (D) 14. 設 $x, y \in N$, 則滿足 $1260x = y^3$ 式中的y 之最小值為 (A) 120 (B) 140 (C) 180 (D) 210 (E) 240.
- (C) 15. 下列五數中, 何者為質數? (A) 221 (B) 323 (C) 331 (D) 399 (E) 483.
- (E) 16. 設x、y∈N, 且xy=5400, 若x、y均為偶數, 則數對(x,y)共有 幾組解? (A) 16 (B) 18 (C) 20 (D) 22 (E) 24.
- (A) 17. 設 n∈N, 則 21n+4 與 14n+3 的最大公因數為 (A) 1 (B) 3 (C) 4 (D) 7 (E) 42.
- (C) 18. 設 a、 $b \in \mathbb{R}$,則 a < 0, b < 0 為 ab > 0, a + b < 0 的何種條件? (A)充分條件 (B)必要條件 (C)充要條件 (D)非充分亦非必要條件.
- (D) 19. 設 a、 $b \in \mathbb{R}$,則 a > 0 或 b > 0 為 ab > 0 的何種條件? (A)充分條件 (B)必要條件 (C)充要條件 (D)非充分亦非必要條件.
- (B) 20. 設 $a, b \in \mathbb{R}$, 則 a+b=0 為 |a|+|b|=0 的何種條件? (A)充分條件 (B)必要條件 (C)充要條件 (D)非充分亦非必要條件.
- (B) 21. 四邊形 ABCD 中,四個角都是直角為四邊形 ABCD 是正方形的何種條件?
 (A)充分條件 (B)必要條件 (C)充要條件 (D)非充分亦非必要條件.
- (E) 22. 計算 $\frac{(1+\frac{11}{2})\cdot(1+\frac{11}{3})\cdots\cdots(1+\frac{11}{11})}{(1+\frac{13}{2})\cdot(1+\frac{13}{3})\cdots\cdots(1+\frac{13}{13})}$ 之值,用最簡分數表示為
 (A) $\frac{13}{575}$ (B) $\frac{13}{100}$ (C) $\frac{7}{100}$ (D) $\frac{91}{2300}$ (E) $\frac{91}{1150}$.
- (C) 23. 設 $x, y \in \mathbb{R}, |x| < 1, |\frac{x-y}{1-xy}| < 1, 則 y 值的範圍為$