機械常識講義

第一回

501136-1

社图考及社员资

機械常識講義 第一回

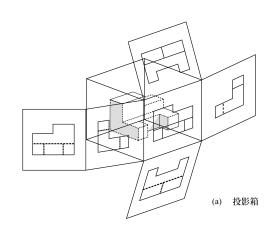
第	一講	模	負械	基础	楚槪	論·		• • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	••••	• • • •	• • • • •	• • •	1
	命題プ	大綱・	• • • • •	• • • • • •	• • • • • •	• • • • •	• • • • •	••••	••••	••••	• • • •	• • • • •	• • • • •	• • • •	• • • • •	••••	• • • •	••••	• • • • • •	•••	1
	重點墊	を理・・	• • • • •	• • • • • •	• • • • • •	• • • •	• • • • •	••••	••••	••••	• • • •		• • • • •	• • • •	• • • • •	••••	• • • •	••••	•••••	•••	2
	_ `	、機板] 學	圖基	礎概	要·		••••		• • • • •	• • • •		• • • • •	• • • •	• • • • •		• • • •			• •	2
		、固體	_, _	_																	
	\equiv	·液氣	壓	學…		• • • • •	• • • •		• • • •	• • • • •		• • • • •		••••	• • • •		• • • •			. 2	25
	精選語	・ 観力			• • • • • •					• • • • •									• • • • • •	• 3	33

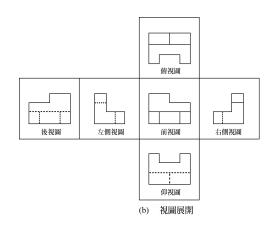
第一講 機械基礎概論

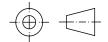
できるできるできるできる。 さるの題大綱 さる さるできるできるできる。

- 一、機械製圖基礎概要
 - (一)機械製圖
 - (二)配和與公差
 - (三)游標卡尺使用方式
- 二、固體力學
 - (一)固體力學概說
 - 二)摩擦
 - (三)運動學
 - 四平面之性質
 - (五)功與能
 - (六)應力學

三、液氣壓學


- (一)液壓學概說
- (二)液壓傳動功率與效率
- (三)氣壓學概說
- 四氣壓系統
- (五)冷凍和蒸汽機




一、機械製圖基礎概要

(一)機械製圖:

- 1.圖包含的基本要求:
 - (1)圖的功能:把設計者之構想繪製成圖,傳遞給加工製作人員、檢驗 人員等。
 - (2)圖的要求一國際性:圖爲技術界的國際語言,即須具有國際語言之性格,如圖形表法、標註方法等必須完全統一規格。
 - (3)尺度單位:公制機械製圖用基本長度單位,通常採用 mm,可以不 用在圖中表示。若需使用其他單位時,則必須註明單位符號。英制 則以 in 為基本長度單位,而不必標註。
- 2.正投影法分爲第一角投影法與第三角投影法兩種,在 CNS 中規定二 者同等適用。第三角法正投影使用更廣泛。
 - (1)第三角法正投影:在作正投影時,凡將投影面置於物體前面所作之投影。即稱爲第三象限之正投影,或稱「第三角投影」。 投影箱之展開如圖(-)之(a)所示,將前視投影面固定,其他各投影面依序展開後之排列位置,及各視圖之名稱如圖(-)之(b)所示。
 - (2)後視圖通常置於左側視圖之左方,亦可置於右側視圖之右方,但需 注意其展開方向相反。
 - (3)採用第三角投影法時,須在標題欄內或其他明顯處繪製如圖(-)之(c) 所示之符號或加註「第三角法」字樣。

(c) 第三角法表示符號

圖(一) 第三角法投影視圖

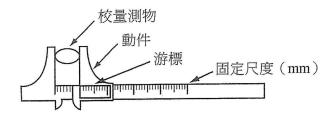
(二)配和與公差:

1.配和:

- (1)種類:機械配合採用基孔制或基軸制或採用兩種方式混合。
- (2)配和方式的選擇:
 - ①機械配合方式之選擇,須視產品之特性、生產數量以及成本等因素來決定。
 - ②通常應在符合精度要求之條件下,採用成本最低的方式來作公差之分配。孔之加工或檢驗,均較軸來的困難。因此大多數情形均採用基孔制的配合方式,並使孔擁有較大的公差。
 - ③若軸爲購入的標準零件,例如鍵、螺栓等爲滿足配合後的機件性 能要求,而以孔湊合軸,則屬基軸制的配合方式。
 - ④兩機件組合時,互相配和之部分多以孔及軸為準。任何零件二平 行面間所含的空間適用「孔」之標準。任何零件二平行面間所含 的實體適用「軸」之標準。
 - ⑤通常兩裝合機件因實際尺度之相互關係,組合後可能會產生間隙, 也可能產生過盈(又稱干涉)。採用何種配合情況,則視機件功能 需求而定。依據配合位置之鬆緊程度,可分下列三種配合情形:
 - A. 留隙配合:兩配合件的孔公差區域全部在軸公差區域之外,於 組合時具有絕對的互換性,組合後兩配合間具有充分的間隙, 可容納潤滑劑,受到外力作用時,兩機件即發生相互的滑動或 旋轉運動。

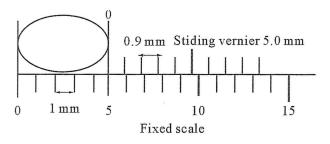
501131-1

- B. 過盈配合:兩配合件的孔公差區域全部在軸公差區域之內,於 組合時具有某程度的材料干涉性,故須施以相當的壓力,或加 熱含孔件後始能組合。兩件組合後則難以取下,成爲永久性的 配合,如火車輪與輪軸的配合。
- C. 過渡配合:兩配合件孔與軸的公差區域互相重疊,組合時可能 成爲留隙配合,亦可能成爲過盈配合,須視兩機件的實際尺度 而定。組合後之兩機件不能輕易滑動或轉動,爲半永久性的配 合,例如活塞與活塞鎖或精密機件的固定組合。
- 2.幾何公差的概念和種類:
 - (1)幾何公差:包含形狀公差和位置公差,是幾何形態外形和位置之所 在的公差幾何。
 - (2)幾何公差的種類、名及符號列於下表所示:

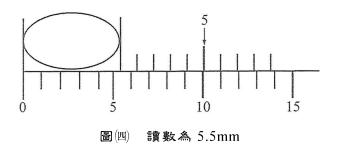

	類別	幾何公差名稱	符號		
		真直度	_		
	單獨形態	真平度			
形狀	平例//28 	真圓度	\bigcirc		
公差		圓柱度	\square		
	單獨形態	曲線輪廓度			
	或相關形態	曲面輪廓度	\triangle		
	兩形態之	平行度	//		
	M / D & Z 相關方向	垂直度	\perp		
位置	在日 19的 ノチ 141	傾斜度	_		
公差	兩形態間之 相關定位	正位度	\oplus		
		同心度			
		對稱度	=		
综	幾何公差	偏轉度	1		
柳 日 土	及門ム丘	總偏轉度	11		

- ①真直度公差:用以管制表面上直線之真直度或旋轉體中心軸線的 真直度。
- ②真平度公差:用以管制一表面的真平度。
- ③真圓度公差:用以管制圓柱、圓錐或球體的真圓度。
- ④圓柱度公差:用以管制圓柱體表面之真圓度、真直度與平行度等 的組合公差。

- ⑤曲線輪廓度公差:用以管制曲線上各點的輪廓形狀。
- ⑥曲面輪廓度公差:用以管制曲面上各點的輪廓形狀。
- ①平行度公差:用以管制直線或平面與基準平行的程度。
- ⑧垂直度公差:用以管制直線或平面與基準成垂直的程度。
- ⑨傾斜度公差:用以管制直線或平面與基準成一定角度傾斜狀態的 誤差。
- ⑩正位度公差:用以管制幾何形態偏離其正確位置的誤差。
- 即同心度公差:用以管制圓或圓柱之中心偏離其基準形態之中心的 誤差。
- ②對稱度公差:用以管制某形態偏離其對稱基準形態正確位置的誤 差。
- ③偏轉度公差:用以管制幾何形態在任何位置,經過該機件圍繞基準軸線作一完全迴轉之最大容許變異量,屬於形狀和位置的綜合 公差。

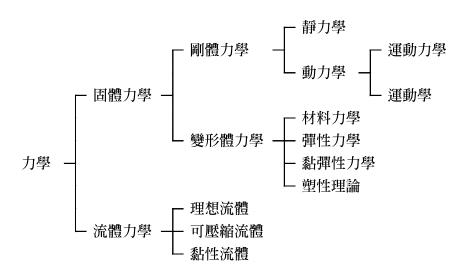

(三)游標卡尺使用方式:

使用方式如圖(二)所示,移動游標夾緊量測物。


圖二 移動游標夾緊量測物

對正游標與固定標示,如圖(三)所示,游標的 0 吻合本尺尺度,所以讀數 為 5.0mm。

圖(三) 讀數為 5.0mm


對正游標與固定標示,如圖四所示,目標物的寬在 6.0~5.0mm 內,游標的 5 吻合本尺尺度,所以讀數爲 5.5mm。

二、固體力學

(一)固體力學概說:

- 1.力學:描述或預測有關物體在運動或靜止狀態下受力作用情況的一種 科學。研究力之作用及作用物所產生之運動或變形效應。
- 2.力學通常區分爲剛體力學、變形體力學、流體力學。各部分細分如下:

3.剛體:

- (1)體內任兩點間之距離均保持不變者。也就是說,即使受力,也是不 變形。
- (2)剛體力學將物體視爲完全剛體,而實際中並沒有絕對之剛體,在受力作用下物體總會發生變形,不過這些變形都很小,對所考慮的物體或結構的運動或平衡,並不產生太大影響。
- 4. 靜力學: 研究力作用在靜止物體上所產生的反應, 著重力的分析。
- 5.動力學又分爲運動學和運動力學:
 - (1)運動學:爲研究物體運動的位置、位移、速度、加速度與時間的關係,不涉及使物體運動之原因。著重於分析物體在空間位置隨時間變化之規律。

- (2)運動力學:是研究物體的運動狀態與其所受力之關係,著重於分析力與運動之關係。
- (3)常用之物理量:

物理量	符號	C.G.S 制	M.K.S 制		
加速度	a	cm/s ²	m/s^2		
角加速度	α	rad/s ²	rad/s²		
角位移	θ	rad	rad		
角 速 度	ω	rad/s	rad/s		
角 動 量	L	$g \cdot cm^2/s$	$kg \cdot m^2/s$		
轉學慣量	I	$g \cdot cm^2$	$kg \cdot m^2$		
面 積	A	cm ²	m^2		
長 度	ℓ	cm	m		
質 量	M · m	g	kg		
質量密度	d	g/cm ³	kg/m ³		
力	F	dyne (gw)	Nt (kgw)		
壓力	P	gw/cm ²	kgw/m ²		

- 6.向量:具備大小及方向的量,如力、力矩、速度等。
- 7.純量:有大小無方向的量,如質量、功、能等。
- 8.力的三要素:大小、方向及作用點。
- 9.張力:繩子受到拉引之力所產生之反作用力形式的力量稱爲張力,作 用物體時又稱爲拉力,方向必沿繩子方向且遠離物體。

10.牛頓三大定律:

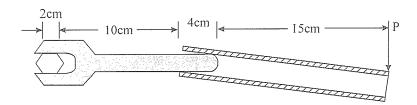
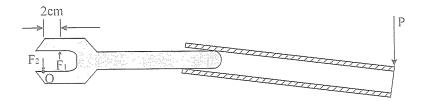
- (1)牛頓第一運動定律:靜者恆靜止,而動者恆做等速度運動,除非受到外來的力量改變其現有的慣性運動,否則一直持續下去。
- (2)牛頓第二運動定律:此爲運動定律: $\bar{a} = \frac{\bar{F}}{m}$ 或 $\bar{F} = m\bar{a}$
- (3)牛頓第三運動定律:此爲作用力等於反作用力,也就是手推物體 F 之力,則物體也有反推手的 F 力,由此可知作用力和反作用力大小相等,方向相反,作用在同一條線上。

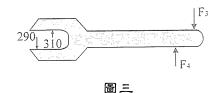
11.兩力平衡之條件:

- (1)大小相等。
- (2)方向相反。
- (3)作用線在同一直線上。
- 12.力矩:

一、以一扳手來旋鬆一螺帽,然而因感覺力量不夠,故加一圓管以增加力矩,若在圓管尾端出力 P=20kg,請問其產生的力矩大約多少。並說明該扳手之受力狀況。

答:


圖 —

圖二

(二)由圖二,
$$\Sigma M_0 = 0$$
 (設逆時針力矩爲正)
⇒ $F_1 \times 2 - P \times (15 + 4 + 10 + 2) = 0$
⇒ $F_1 \times 2 = P \times 31$
⇒ $F_1 = \frac{20 \times 31}{2} = 310$ (kg)
 $\Sigma F = 0$ (向上爲正)
⇒ $F_1 - F_2 - P = 0$
⇒ $310 - F_2 - 20 = 0$

 \Rightarrow F₂ = 290 (kg)

 (Ξ) 由圖三, $\Sigma F = 0$ (向上爲正)

$$\Rightarrow$$
 $F_1 + F_4 - F_2 - F_3 = 0$

$$\Rightarrow$$
 310 - 290 + F_4 - F_3 = 0

$$\Rightarrow$$
 $F_4 - F_3 = -20$

$$\Rightarrow$$
 $F_3 = F_4 + 20$

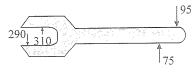


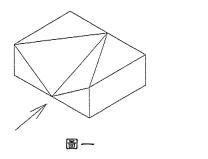
圖 四

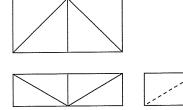
(四)由圖四, $\Sigma M = 0$ (對螺帽軸心線)

$$\Rightarrow$$
 $F_1 \times 1 + F_2 \times 1 + F_4 \times 11 - F_3 \times 15 = 0$

$$\Rightarrow$$
 310 + 290 + 11 F_4 - 15 F_3 = 0

$$\Rightarrow 11F_4 - 15(F_4 + 20) = -600$$


$$\Rightarrow$$
 $-4F_4 = -300$


$$F_4 = 75 \text{ (kg)}$$

$$F_3 = F_4 + 20 = 95$$
 (kg)

二、請就圖一的立體圖以第三角投影法繪一組三視圖。(可不按題目尺寸,但請注意三視圖之相關位置)。

答:如圖二:

圖二

三、在機械領域中,摩擦力的存在對於機械有何負面影響?又有那些機械元件是要靠摩擦力來完成它的工作?

答:(一)在機械領域中,摩擦力之存在對於機械有造成輸出功變少,機件過熱、 機件磨損等的負面影響。